Complete Shadow Symbolic

Execution with Java PathFinder

Reading 13.06.2023. Zakharov Vladimir

Authors: Yannic Noller, Minxing Tang, Hoang LLam
Nguyen, Timo Kehrer (Germany)

Keywords: Regression Testing; Symbolic Execution;
Symbolic PathFinder

ACM SIGSOF'T October 2019
https://dl.acm.org/doi/10.1145/3364452.33644558

Meta Data

Conference:

Track:

Year:

Number of Authors:
Citations:

Pages (PDF):
Figures:
References:

Formals:

ACM SIGSOF'T (Special Interest Group on Software Engineering)
Software and its engineering

2019

4

3

5

6

16

Absent

What s the study about?

* How to generate tests based on the code diff

» Shadow Symbolic Execution (SSE) -> SSE+

int foo(int x){
int y;
if(x < 0){

return O0;

} else {
if(y == 1)
assert (false);

}

return 1;

}

SSE

SSE+

Detects that error with the
path x = -1 was fixed

Detects that error with the
path x = -1 was fixed

Detects that error is fixed
by the change, but misses
the new error produced
with x=0

Found one more bug with
x=0

What s the study about?

[PCotd, PCrew : true]
x=X
0y
[PC1q : true]
[PCota : (X < 0)] [PChrew : true]

difffalse

PO (x <0)) | tometmse ——] (FChon iy

[PCold . (X < 0) N ('—QX > 1)] SAMEtry SAT [l < ()] 13 . <0
[PChew : (X <0)A (X +1>1)]/ Yota: —X > 17 diff

true

[PCold . (X < 0)]
[PChew : (X = 0)]

SAT [z < —2] Dpew : X2+1>17 SaMeEjfalse [PCoa : (X > 0)] UNSAT
10poth : Teturn 0;] [PChew : (X < 0)] 17
3 . alse INSAT
samefalse i Ise [PCoia : (X > 0)] 16 —
PChrew : (X 20
[PCold(X<O)/\(—2X>].)] [SAT [CZEZ(_)])] d’l,ff
[PCola : (X <0)A(—X <1)] [PChew : (X f\oi ngX +1<1)] O01d :2X > 17 fatse [PCota : (X > 0) A (2X > 1)]
[PCnew:(X<‘O)‘(\{(X2+1S1)] - Onew :2X +1>17 [PChew : (X > 0)A(2X +1 < 1)]
UNSAT 7 UNSAT
4 SaMe false [PCota: (X 2 0)A(2X <1)] T
[PCrew : (X 2 0)A(2X +1 > 1)]
[PCoa: (X <0)A(—X < 1)] [PCoa: (X > 0) A (2X <1)] UNSAT
[PChew : (X <O0)A (X2 41> 1)] [PChq: (X >0) A (2X > 1)] [PCrew : ()qf GO[) A (2]X +1<1)] d'I;f
SAT [z = —1 PCrew: (X>0)ARX+1>1 SAL |z =0 tf fratse)
o Ass[ertm jEmr [(¥ [l 2(1]) 190 12X == 17 b Cgpcofd).((i(= 0) A)({2X 1s<1)1/\ (2;(X==11)] 1
10new : return 0; 10s0th : Teturn 0; 12pew 12X +1==17 [PCrnew : (X 2 0) A (UNS-'*-'\"L_ JAQRX +1#1)]

5 8

13

samefalse

[PCota: (X 2 0)AN(2X <1)A(2X #1)]
[PChew : (X Z20)AN2X +1<1)A(2X +1==1)]

[PCola: (X 2 0)AN(2X <1)A (2X ==1)] [PCola: (X 2 0)A(2X <1)A(2X # 1)] SAT [z = 0]
[PCrew : (X 20N 2X +1<1)AQRX+1==1)] [PCrew : (X Z20)AN2X +1<1)ARX+1#1)] 16014 : return 1
UNSAT UNSAT 13new : Assertion Error

10 11 12

Table of Content

1. Introduction

2. Background and 5. Approach
motivation 4. Evaluation
2.1. Symbolic Execution 4.1. Results and Analysis

2.2. Shadow Symbolic Execution 5. Conclusion and Discussion

2.3. Need for Further Research

Feedback

Problem Statement

Deeper divergences might be missed in the BSE phase: The
BSE phase of [13] aims to find additional test inputs that trigger
divergent behavior by exploring the execution tree of the new
version starting from each divergence point found in the concolic
phase. This implies that each BSE run inherits the path condi-
tion prefix from the initial input from the start to the divergence
point. For example in Listing 1, for the input x=-1, which fully
covers the changed statements, [13] would only generate the test
case representing the fixed path and it would miss the path with
the new introduced assertion error. The reason for that is that
the collected path condition prefix limits the exnloration snace of

BSE. The colll The initial input has to cover potential divergence points:
order to get to Since the concolic phase
BSE needs to of [13] only searches
tion: (X?+ 1 for divergences along the
contradicts wil path of a concrete in-
2 in Figure 1). put that exercises the
introduced assc patch, divergences along
alternative paths will be
missed if there is no sat-
isfiable divergence at the
branching point. This
means that if the concrete input does cover the changed state-
ments, but does not cover the potential divergence point, then
[13] is not able to find the diff path. In the program in Listing E
a potential divergence can happen only in line 4 because it is the
only condition that depends on a changed variable. The condition
in line 3 is never a divergence point because the variables in the
condition are not affected by the patch. To discover the diver-
gence, the initial input has to actually reach line 4, meaning that
any initial input x and y with x+y # 5 would miss the divergence
because concrete execution would follow only the false branch of
the conditional statement in line 3 and discard the other paths.

int bar(int x, int y){
int z = change(x,y);
if ((x+y) == 5){

if(z == -100)
assert (false);

}

return 0;

OO Ui WN -

}

Listing 2: Limitation example.

Feedback

Innovation

In this work, we presented an approach to generate test inputs
exposing the divergences between two program versions. We pro-
vided a complementary exploration strategy to the existing tech-
nique by [13] and implemented SHADOW pF+ as an extension of
the SHADOW pr tool. In order to evaluate the effectiveness of our
approach, we performed experiments on 79 generated mutants
and compared the results with SHADOW; pr. Additionally, we ap-

Feedback

Contribution

The main contributions of this work are:

1. The combination of complete symbolic execution with the
idea of four-way forking, as a technique to generate regres-
sion tests that expose changed program behavior.

2. The tool SHADOW; pr. as an extension of the SHADOW pr.

3. The application of SHADOW; pr, on various examples, in-
cluding a patch for the Joda-Time library in order to eval-
uate its test case generation capabilities. Furthermore, our
approach is compared to SHADOW pr to assess the effective-
ness of our improved search exploration strategy.

Feedback

Logical Correctness

Subjects: We selected the following software artifacts as our ex-
perimental subjects from the official SPF repositoryF (with the
corresponding LOC): Rational.abs (30), Rational.gcd (40), Ratio-
nal.simplify (51), WBS.update (234) and WBS.launch (242) and
generated in total 79 mutants with the Major mutation frame-
work (8] (similar as [12]) with the following change types: Re-
lational Operator Replacement (ROR), Operator Replacement
Unary (ORU), Arithmetic Operator Replacement (AOR) and State-
ment Deletion (STD). Since Major only generated single mutants

Feedback

Proof of Statements

404: Not found

No proofs

No algorithms (at least in algorithmic
programming language)

Weak evaluation

Feedback

Readability

- Structure (sequence)

- Well-defined sections

-Clear and understandable RQ and
Contribution

-Formatting

-Code samples
-Tables

Conclusion

Accept (good for a workshop)

