
Max Trunnikov 2024-01-30

Improving JavaScript
performance by deconstructing
the type system
Paper review

Meta data

• Authors: Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas

• Conference: PLDI '14: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation

• Year: 2014

• Citations: 55

• References: 23

• Downloads: 822

• Pages: 12

What is this study about?

• Increased focus on JavaScript performance has resulted in vast performance improvements for
many benchmarks.

• However, for actual code used in websites, the attained improvements often lag far behind those
for popular benchmarks.

• The main reason behind this shortfall is how the compiler understands types.
• JavaScript has no concept of types, but the compiler assigns types to objects anyway for ease of

code generation.
• Chrome V8 compiler defines types, and identify two design decisions that are the main reasons

for the lack of improvement: (1) the inherited prototype object is part of the current object’s type
definition, and (2) method bindings are also part of the type definition.

• These requirements make types very unpredictable

Table of contents
Abstract

1. Introduction

2. Background

3. Motivation of the paper

4. Low type predictability

5. Restructuring the type system

6. Discussion

7. Evaluation

8. Related work

9. Conclusion

10. References

Problem statement 👍

• Only recently has it come to light that the behaviour of JavaScript code in real websites is more
dynamic than in the benchmarks

• V8 is unable to substantially improve the performance of JavaScript in JSBench
• Type dynamism stems from the way the compiler understands types
• V8 defines three aspects of objects to be part of the type description:

• The object’s structure
• The object’s inherited prototype
• The object’s method bindings.

• The expectation is that, although JavaScript allows for more dynamism, it will follow the behaviour
of static languages in actual execution. This assumption, while true for popular benchmarks, often
turns out to be inaccurate for real website code

Innovation 👍

Restructuring the type system
• Decoupling prototypes from types

• Optimizing function creation
• Optimizing Built-in object creation

• Decoupling method bindings from bindings
• Complete decoupling
• Partial decoupling

Contribution 👍

Readability 👍

👍
An exemplary article

