Improving JavaScript
performance by deconstructing
the type system

Paper review

Max Trunnikov 2024-01-30

Meta data

« Authors: Wonsun Ahn, Jiho Choi, Thomas Shull, Maria J. Garzaran, and Josep Torrellas

« Conference: PLDI '14: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation

e Year: 2014
 Citations: 55
 References: 23
 Downloads: 822

 Pages: 12

What is this study about?

¢ Increased focus on JavaScript performance has resulted in vast performance improvements for
many benchmarks.

e However, for actual code used in websites, the attained improvements often lag far behind those
for popular benchmarks.

e The main reason behind this shortfall is how the compiler understands types.

e JavaScript has no concept of types, but the compiler assigns types to objects anyway for ease of
code generation.

e Chrome V8 compiler defines types, and identify two design decisions that are the main reasons
for the lack of improvement: (1) the inherited prototype object is part of the current object’s type
definition, and (2) method bindings are also part of the type definition.

e These requirements make types very unpredictable

Table of contents

Abstract

1. Introduction

2. Background
. Motivation of the paper
. Low type predictability

. Restructuring the type system

3

4

5

6. Discussion
/. Evaluation

8. Related work
9. Conclusion

1

0. References

Problem statement -

e Only recently has it come to light that the behaviour of JavaScript code in real websites is more
dynamic than in the benchmarks

e V& is unable to substantially improve the performance of JavaScript in JSBench
e Type dynamism stems from the way the compiler understands types
e V8 defines three aspects of objects to be part of the type description:

e The object’s structure

e The object’s inherited prototype

e The object’s method bindings.

e The expectation is that, although JavaScript allows for more dynamism, it will follow the behaviour
of static languages in actual execution. This assumption, while true for popular benchmarks, often
turns out to be inaccurate for real website code

Innovation -

Restructuring the type system

® Decoupling prototypes from types
e Optimizing function creation
¢ Optimizing Built-in object creation

¢ Decoupling method bindings from bindings
e Complete decoupling

e Partial decoupling

Contribution -

e It identifies type unpredictability as the main source of
performance shortfall for website code. Further, it singles
out frequent changes to prototypes and method bindings as
the cause of the unpredictability, as well as scenarios that
trigger them.

e [t proposes three enhancements to the compiler that ef-
fectively decouple prototypes and method bindings from the
type definition, and eliminate most type unpredictability.

e [t implements these enhancements in V8 and evaluates
them with JSBench. The results show that, on average, our
enhancements reduce the execution time by 36%, and the
dynamic instruction count by 49%. Moreover, the reduction
in type dynamism leads to a reduction in bookkeeping in-
formation in the compiler, leading to a savings of 20% in
heap memory allocation. Finally, the performance of popu-
lar JavaScript benchmarks is largely unchanged.

Readability - =

Objects Hidden Classes
@ pl @ Property | Offset
Offset 0 | 11 _p"?tO_
Offset 1 |22 2dd x
Hidden Class @ Property | Offset
X 0
__proto__
;add y
@ p2 @ [Property | Offset
Offset 0 |33 " 0
Offset 1 |44 / y 1
Hidden Class proto__

Figure 2: Example of hidden classes.

@

var initAmznJQ = function () {

window.amznJQ = new function () {
var me = this;
me.addLogical = function(...) {...

me.declareAvailable =

YO

window.amznJQ.declareAvailable (”JQuery”) ;

s

function(...) {...

s

1
2
3
. Prototype Hidden 4
Prototype Objects Classes 5
Point.prototype @ Property | Offset g
Offset 0 I 100 __proto__ 7 8
Hidden Class éadd size 9]}
Property | Offset
size 0
__proto___ 7
100.07]
10.07

Normalized Instructions

mBaseline 7
=No Crankshaft /
ZNo Crankshaft, No IC

S—

An exemplary article

