An Efficient Native Function Interface for Java

Lev Bagryansky

Meta data

e Authors: Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, @ Matthias Grimmer

Hanspeter Mossenbock. Johannes Kepler University, Austria

e Conference: Principles and Practice of Programming in Java, 2013

e 11 citations. @ Manuel Rigger

e 575 Downloads. Johannes Kepler University, Austria
e 10 pages.

Lukas Stadler
Johannes Kepler University, Austria

Roland Schatz
Oracle Labs

Hanspeter Mossenbock
Johannes Kepler University, Austria

OCONOOARWN =

I Index Terms

Paper layout

Abstract

Introduction

System Overview

The Graal Native Function Interface
The Call Stub

Native Function Calls in Interpreted Mode
Native Function Calls in Compiled Mode
Evaluation

Related Work

Conclusion

Acknowledgments (Not numerated)
References (Not numerated)

An efficient native function interface for Java

Software and its engineering

Software notations and tools

Compilers

My personal assessment by criteria

Problem statement.)
Innovation.

Contribution.

Logical correctness.

Proof of statements.
Readability. & o

Abstract

We present an efficient and dynamic approach for calling native
functions from within Java. Traditionally, programmers use the
Java Native Interface (JNI) to call such functions. This paper in-
troduces a new mechanism which we tailored specifically towards
calling native functions from Java. We call it the Graal Native
Function Interface (GNFI). It is faster than JNI in all relevant cases
and more flexible because it avoids the JNI boiler-plate code.

A brief overview of the content

While it is common to write JNI wrapper functions to call native
target functions, this has several disadvantages: double floor (double value);

Listing 1: Signature of an C function £1cor

¢ For invoking a native target function two calls have to be per-

formed. The first call is from the Java application to the JNI NativeFunctionInterface ffi = Graal.

wrapper and the second from the JNI wrapper to the native tar- getRequiredCapability (

get function. In principle, a single call would suffice, namely NativeFunctionInterface.class);

from the Java application to the native target function. NativeLibraryHandle libraryHandle = ffi.
getLibraryHandle ("libMyMath.so");

e NI has an additional overhead when setting up parameters.
Especially when JNI accesses Java arrays, no access method
guarantees not to copy the array [9, 11] before using it on the
native side.

NativeFunctionHandle functionHandle = ffi.
getFunctionHandle (libraryHandle, "floor",
double.class, double.class);

e The call to a native method is opaque to the JIT compiler, Listing 2: Obtaining a GNFI function handle
meaning that it cannot inline the call. We refer to this as a

compilation barrier. Because of the compilation barrier, the JIT
compiler cannot optimize the native code of the JNI wrapper
function that sets up the parameters.

Object[] arg = new Object([1l];

arg[0] = new Double(l.5);

double result = Double.longBitsToDouble (
functionHandle.call (arg));

® The programmer has to implement, compile and link the JNI
wrappers written in C/C++ instead of being able to call the
native target function from Java directly.

Listing 3: Using the GNFT function handle to call a native target
function

A brief overview of the content

Interpreted Java Method
‘call
NativeFunctionHandle
’
Interpreted | Compiled ' Compiled .
Java Code 1 Java Code 1 Native Code interface :
| : extension ponts to
: : Interpreter
[N =y | i 1 R Lo ot
e | g | Native Target Machine Code
Java Method i Call Stub i Fanchion
: :
| | call 7 Z
Call Stub Native Target Function
Figure 2: Layer gaps between the interpreted Java code and the
native target function. Figure 4: Execution in interpreter mode

Evaluation

JNA int
JNI int

GNFI int

0K 17500K 35000K 52500K TO000K

Figure 11: Performance of nopFunction (interpreted mode)

INA B Ave
INI

GNFI runtime callstub

GNFI static callstub

0K 100000K 200000K 300000K 400000K

Figure 13: Performance of nopFunction (compiled mode)

Compared to JNI, GNFI has to go through more layers to
perform the call. As we described in Section 5, GNFT has to bridge
interpreted and compiled code, which impedes the performance.
For the performance of an application, interpreted code plays a
minor role. Hence, when we designed our implementation, we
neglected the performance in interpreted mode and focused on
performance in compiled mode.

For the micro benchmarks, GNFI with static callstub can inline
the callstub (described in Section 6) and thus remove one call site.
The JIT compiler can also remove the args array. This inlining
explains the 6% speedup of the static callstub compared to the
runtime callstub. GNFI with runtime callstub is faster than JNI
because GNFI does a direct call to the call stub. Compared to JNI,
GNFI does not set up any environment parameters, which explains
the different performances.

Jblas Matrix Multiplication Benchmark

becomes negligiblc'. The perfonnancc.advantage of GNFI results

from not having to copy the matrices. JNA int Min
While for n = 10 there was still a performance gap between INI int Avg’
compiled and interpreted Java code, this performance gap becomes ik Max
almost non-existent for n = 100 and n = 1000. GNFI int
JNA int W Min JNA
e H Avg
JNT int B Max JINI
GNFI int .
INA GNFI runtime callstub
INI GNFI static callstub
GNFI runtime callstub
GNFT static callstub 0K 10K 20K 30K 40K H0K
0K 5000K 10000K 15000K 20000K
Figure 15: Performance of jblas for n = 10 Flgure 16: Performance Of.lblas for n = 100
JNA int MW Min
W Avg
JNI int M Max

GNFI int

JNA

JNI

GNFI runtime callstub
GNFI static callstub

0 10 20 30 40 50 60 70

Figure 17: Performance of jblas for n = 1000

Paper’s disadvantages

Some aspects are unclear(Why does jni copies array, why is jna so bad).
| would like to see Related work at the beginning.

What exactly JIT inlines.
Limitations of new approach.
Acceleration is not proved.

Graal Compiler

Graal
Native Function Interface

Graal - HotSpot Runtime Interface

Interface
Extension

Figure 1: System architecture of the Graal VM.

