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Abstract

We present an efficient and dynamic approach for calling native
functions from within Java. Traditionally, programmers use the
Java Native Interface (JNI) to call such functions. This paper in-
troduces a new mechanism which we tailored specifically towards
calling native functions from Java. We call it the Graal Native
Function Interface (GNFI). It is faster than JNI in all relevant cases
and more flexible because it avoids the JNI boiler-plate code.



A brief overview of the content

While it is common to write JNI wrapper functions to call native
target functions, this has several disadvantages: double floor (double value);

Listing 1: Signature of an C function £1cor

¢ For invoking a native target function two calls have to be per-

formed. The first call is from the Java application to the JNI NativeFunctionInterface ffi = Graal.

wrapper and the second from the JNI wrapper to the native tar- getRequiredCapability (

get function. In principle, a single call would suffice, namely NativeFunctionInterface.class);

from the Java application to the native target function. NativeLibraryHandle libraryHandle = ffi.
getLibraryHandle ("libMyMath.so");

e NI has an additional overhead when setting up parameters.
Especially when JNI accesses Java arrays, no access method
guarantees not to copy the array [9, 11] before using it on the
native side.

NativeFunctionHandle functionHandle = ffi.
getFunctionHandle (libraryHandle, "floor",
double.class, double.class);

e The call to a native method is opaque to the JIT compiler, Listing 2: Obtaining a GNFI function handle
meaning that it cannot inline the call. We refer to this as a

compilation barrier. Because of the compilation barrier, the JIT
compiler cannot optimize the native code of the JNI wrapper
function that sets up the parameters.

Object[] arg = new Object([1l];

arg[0] = new Double(l.5);

double result = Double.longBitsToDouble (
functionHandle.call (arg));

® The programmer has to implement, compile and link the JNI
wrappers written in C/C++ instead of being able to call the
native target function from Java directly.

Listing 3: Using the GNFT function handle to call a native target
function



A brief overview of the content
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Evaluation
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Figure 11: Performance of nopFunction (interpreted mode)
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Figure 13: Performance of nopFunction (compiled mode)

Compared to JNI, GNFI has to go through more layers to
perform the call. As we described in Section 5, GNFT has to bridge
interpreted and compiled code, which impedes the performance.
For the performance of an application, interpreted code plays a
minor role. Hence, when we designed our implementation, we
neglected the performance in interpreted mode and focused on
performance in compiled mode.

For the micro benchmarks, GNFI with static callstub can inline
the callstub (described in Section 6) and thus remove one call site.
The JIT compiler can also remove the args array. This inlining
explains the 6% speedup of the static callstub compared to the
runtime callstub. GNFI with runtime callstub is faster than JNI
because GNFI does a direct call to the call stub. Compared to JNI,
GNFI does not set up any environment parameters, which explains
the different performances.



Jblas Matrix Multiplication Benchmark

becomes negligiblc'. The perfonnancc.advantage of GNFI results

from not having to copy the matrices. JNA int Min
While for n = 10 there was still a performance gap between INI int Avg’
compiled and interpreted Java code, this performance gap becomes ik Max
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Figure 17: Performance of jblas for n = 1000



Paper’s disadvantages

Some aspects are unclear(Why does jni copies array, why is jna so bad).
| would like to see Related work at the beginning.

What exactly JIT inlines.
Limitations of new approach.
Acceleration is not proved.
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Figure 1: System architecture of the Graal VM.



