Rust as a Language for High Performance GC
Implementation

paper review



Meta data

e Authors: YiLin, Stephen M. Blackburn, Antony L. Hosking, Steve Backburn A
. . Australian National University, Australia
Michael Norrish.
e Conference: ACM SIGPLAN International Symposium on Memory
Management. Publication Years 1997 - 2022
® 8 citations. Publication counts 77
e 4094 Downloads.
® 10 pages. Available for Download 87
Citation count 6,299
Downloads (cumulative) 85,843
Downloads (6 weeks) 601
Downloads (12 months) 11,317
Average Citation per Article 82
Average Downloads per Article 987

View Full Profile




Paper layout.

1. Abstract. VindexTems

2. Introduction. Rust as a language for high performance GC Implementation
3. Rust Background. ——

4. Using Rust.

5. Abusing Rust. T ——_

6. Evaluation.

7. Conclusion. G

8. Appendices.



My personal assessment by criteria

Problem statement.
Innovation. )
Contribution. )
Logical correctness.
Proof of statements.
Readability.



Intro

We evaluate the software engineering of a high performance
collector, and our experience confirms the prior work. In particu-
lar, we confirm that: (i) performance-critical code is very limited in
its scope, (if) memory-unsafe code is very limited in its scope, and
(7if) language-supported, high performance thread-safe data struc-
tures are fundamental to collector implementation. For these rea-
sons, a well-chosen language may greatly benefit collector imple-
mentations without compromising performance.

We start by describing how we are able to use Rust’s particular
language features in our high performance collector implementa-
tion. We then discuss cases where we found it necessary to abuse
Rust’s unsafe escape hatches, avoiding its restrictive semantics, and
ensuring the performance and semantics we required. Finally, we
conduct a head-to-head performance comparison between our col-
lector implementation in Rust and a mostly identical implementa-
tion in C to demonstrate that if used properly, the safety and ab-
straction cost from Rust is minimal, compared to an unsafe lan-
guage such as C. Also we show that both implementations outper-
form BDW, a production-level GC. This suggests that it is possible
to have a fast GC implementation that also benefits from its imple-
mentation language’s safety guarantees.



Using Rust

1 #[derive(Copy, Clone, Eq, Hash)]
2 pub struct Address(usize);

. 3
and safety. Addresses and object references are two distinct ab- e L iietie
1 1 1 . o oo o o 6 #[inline (always) ]
stract concepts in GC implementations: an address represents an S SRt e R S RAATASE |
8 Address (self.0 + bytes)
9 }
P 111 1 1 ‘ 10
arbitrary l.OcalIOI.'l in the memory space managed by the GC and .
address arithmetic is allowed (and necessary) on the address type, Al eete) o x
. . ~ . . 13 unsare n oaqa<T: opy> i&se ->
while an object reference maps directly to a language-level object, 1« © . (self.0 ac smat 1)
pointing to a piece of raw memory that lays out an object and that s @
assumes some associated language-level per-object meta data (such ¥ o seaid
2 : G : 18 #[inline(always) ]
as an object header, dispatch table, etc). Converting an object ref- o il B Ciow pfcoi (BEES dgeaRE T <5 Kadbes 1
- > . - 20 unsafe {mem::transmute(ptr)}
erence to an address 1s always valid, while converting an address to 2}
an object reference is unsafe. o e
24 # [inline (always) ]
25 pub unsafe fn zero () -> Address {
26 Address (0)

27 }
28

29

30 }

Figure 1. An excerpt of our Address type, showing some of its
safe and unsafe methods.



Abusing Rust

mark table. However, in Rust, if we were to create the line mark
table as a Rust array of ug, Rust would forbid concurrent writing
into the array. Ways to bypass this within the confines of Rust are
to either break the table down into smaller tables, or to use a coarse
lock on the large table, both of which are impractical.

On the other hand, during collection, the mutual exclusion en-
joyed by the allocator does not exist: two collector threads may race
to mark adjacent lines, or even the same line. The algorithm ensures
that such races are benign, as both can only set the line to ‘live’ and
storing to a byte is atomic on the target architecture. However, in

pub struct AddressMapTable {
start : Address,
end : Address,

len : usize,
ptr : smut u8
}
// allow sharing of AddressMapTable across threads
unsafe impl Sync for AddressMapTable {};
10 unsafe impl Send for AddressMapTable {};

W 0N A W -

-
-

12 impl AddressMapTable {
13 pub unsafe fn set (&self, addr: Address, value: u8)
14 {

15 let index = addr.diff (self.start) >> LOG_PTR_SIZE;
16 unsafe |

17 let ptr = self.ptr.offset (index);

18 // intrinsics::atomic_store_relaxed(ptr, value);
19 *ptr = value;

20 }

21 }

22 }

Figure 4. Our AddressMapTable allows concurrent access with
unsafe methods. The user of this data structure is responsible for
ensuring that it is used safely.



Evaluation

C Rust (% to C)
alloc | 370 £0.1ms 374 +£2.9ms (101%)
mark 63.7 =0.5ms 64.0 = 0.7 ms (100%)
trace | 267 +2.1ms 270+ 1.0 ms (101%)

Table 2. Average execution time with 95% confidence interval for
micro benchmarks of performance critical paths in GC. Our imple-
mentation in Rust performs the same as the C implementation.

900

— Result
800 - = Limit

700

600

500

400}

3001

Execution Time (msec)

200

100

% 1 2 3 a 5 6 7

Number of GC Worker Threads for Parallel Mark and Trace

Figure 5. Performance scaling for our fast implemented libraries-
based parallel mark and trace collector.



Conclusion

As for me, the article does not offer anything fundamentally new. Nevertheless, it
is pleasant to read and it is understandable in most moments. It is good as an
article on the habrahabr.



