
Reading 04.07.2023 Korostinskiy Roman

Fast and Precise Hybrid Type
Inference for JavaScript
Authors: Brian Hackett, Shu-yu Guo

Paper Meta Data

Conference: PLDI (Programming Language Design and Implementation)

Categories and Subject Descriptors: Compilers, optimization

Keywords: type inference, hybrid, just-in-time compilation

Year: 2012

Number of Authors: 2

Citations: 8

Pages: 13

References: 27

What is the study about?

• JavaScript performance is often bound by its dynamically typed nature.

• The authors speed up the Mozilla Firefox JavaScript JIT (just in time) compiler.

• To do this, the authors use static type inference.

• Using complete type inference for JavaScript is too sophisticated and slow.

• In order to optimize it, the authors use a hybrid approach of static type
inference and dynamic type checking.

What is the study about?
Motivating example

Static Type inference
1. [17]: Box(10) => Box.p - integer

2. [17]: a[i] = new Box(10) => a - may contain Box

3. [18]: use(a) && #2 => [8]: a[i] - may be Box
4. [8]: var v = a[I].p; && #1 => v - may be integer

5. [6]: res = 0 && #4 => [9]: res + v - may be integer

What is the study about?
Motivating example

Static Type inference
1. [17]: Box(10) => Box.p - integer

2. [17]: a[i] = new Box(10) => a - may contain Box

3. [18]: use(a) && #2 => [8]: a[i] - may be Box
4. [8]: var v = a[I].p; && #1 => v - may be integer

5. [6]: res = 0 && #4 => [9]: res + v - may be integer

But
• The read of a[i] may access a hole in the array

• Similarly, the read of a[i].p may be accessing a missing property

• The addition res + v may overflow.

What is the study about?
Motivating example

Static Type inference
1. [17]: Box(10) => Box.p - integer

2. [17]: a[i] = new Box(10) => a - may contain Box

3. [18]: use(a) && #2 => [8]: a[i] - may be Box
4. [8]: var v = a[I].p; && #1 => v - may be integer

5. [6]: res = 0 && #4 => [9]: res + v - may be integer

But
• The read of a[i] may access a hole in the array

• Similarly, the read of a[i].p may be accessing a missing property

• The addition res + v may overflow.

<- Unsound

Solution - Semantic triggers (dynamically checked)
• If a[i] acesses - hole => inferred type possibly undefined.

• If res + v overflows => inferred type possibly a double.

What is the study about?
Motivating example

Static Type inference
1. [17]: Box(10) => Box.p - integer

2. [17]: a[i] = new Box(10) => a - may contain Box

3. [18]: use(a) && #2 => [8]: a[i] - may be Box
4. [8]: var v = a[I].p; && #1 => v - may be integer

5. [6]: res = 0 && #4 => [9]: res + v - may be integer

But 2
• [8]: a[I].p may be a string

• Then expression res + v will be compiled 4 times for all

combinations of string and integers. This is inefficient in JIT
compilation

<- Unsound

Solution - Type barriers (dynamically checked)
• [8]: a[I].p is a type barier. This expression will be dynamically checked

Table of Content

1. The Need for Hybrid Analysis

1. Comparison with other techniques

2. Analysis

1. Object Types

2. Type Constraints

3. Type Barriers

4. Example Constraints

5. Supplemental Analysis

3. Implementation

1. Recompilation

2. Memory Management

4. Evaluation

1. Benchmark Performance

2. Website Performance

5. Related work

6. Conclusion and future work

Feedback

• Problem statement is clear thanks to the motivating example. Also there is working
tool that.

• Innovation: before this work, there were some hybrid approaches (are mentioned in
Related Works)

• Contributions: Main technical contribution is a hybrid inference algorithm. Practical
contributions include both an implementation of algorithm and evaluations.

• Proof of statements: The efficiency of the algorithm was compared with a usual
JIT compiler, and not with the same hybrid approach.

• Readability: Good readability thanks to examples.

