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What is the study about?

• JavaScript performance is often bound by its dynamically typed nature.


• The authors speed up the Mozilla Firefox JavaScript JIT (just in time) compiler.


• To do this, the authors use static type inference.


• Using complete type inference for JavaScript is too sophisticated and slow.


• In order to optimize it, the authors use a hybrid approach of static type 
inference and dynamic type checking.



What is the study about?
Motivating example

Static Type inference 
1. [17]: Box(10) => Box.p - integer

2. [17]: a[i] = new Box(10) => a - may contain Box

3. [18]: use(a) && #2  => [8]: a[i] - may be Box 
4. [8]: var v = a[I].p; && #1 => v - may be integer

5. [6]: res = 0 && #4 => [9]: res + v - may be integer
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But 
• The read of a[i] may access a hole in the array

• Similarly, the read of a[i].p may be accessing a missing property

• The addition res + v may overflow.
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<- Unsound

Solution - Semantic triggers (dynamically checked) 
• If a[i] acesses - hole => inferred type possibly undefined. 

• If res + v overflows => inferred type possibly a double.
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Motivating example

Static Type inference 
1. [17]: Box(10) => Box.p - integer

2. [17]: a[i] = new Box(10) => a - may contain Box

3. [18]: use(a) && #2  => [8]: a[i] - may be Box 
4. [8]: var v = a[I].p; && #1 => v - may be integer

5. [6]: res = 0 && #4 => [9]: res + v - may be integer

But 2 
• [8]: a[I].p may be a string

• Then expression res + v will be compiled 4 times for all 

combinations of string and integers. This is inefficient in JIT 
compilation

<- Unsound

Solution - Type barriers (dynamically checked) 
• [8]: a[I].p is a type barier. This expression will be dynamically checked
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Feedback

• Problem statement is clear thanks to the motivating example. Also there is working 
tool that.


• Innovation: before this work, there were some hybrid approaches (are mentioned in 
Related Works)


• Contributions: Main technical contribution is a hybrid inference algorithm. Practical 
contributions include both an implementation of algorithm and evaluations. 

• Proof of statements: The efficiency of the algorithm was compared with a usual 
JIT compiler, and not with the same hybrid approach. 

• Readability: Good readability thanks to examples.


