Infeasible Path Ml

Bernard'Botellaa

G e n e r al i Z ati O n i n Dyn a mi C CEA T Catmpus dantiovation en Micro et Nanotechniologies (MINATEC)

Arnaud/Gotliebb

I E |
S s/ I I l b Oli C Xec | I tiO I l } Simula'Résearch Tiaboratory *1Departmentiof Software Enginéerin

https://www.researchgate.net/institution/University-of-Grenoble
https://www.researchgate.net/institution/Simula-Research-Laboratory

Meta Data & Stats

Published in: IST
Year: 2014
Number of Authors: 3
Citations: 18
Pages (PDF): 20
Figures: 12
References: 38

Formals: 7 definitions

W N

o N1 OV e

Table of Content

. Introduction

Background and Notations

Infeasible Path Generalization

. Integration to Dynamic Symbolic

Execution

. Experimental evaluation

Related Work

Conclusion

. References

Introduction

Objective: When selecting paths in DSE for generating test inputs, some paths are actually detected as being

infeasible, meaning that no input can be found to exercize them. But, showing path infeasibility instead of
generating test inputs 1s costly and most effort could be saved in DSE by reusing path infeasibility
information.

Method: In this paper, we propose a method that takes opportunity of the detection of a single infeasible path
to generalize to a possibly infinite family of infeasible paths. The method first extracts an explanation of path
condition, that 1s, the reason of the path infeasibility. Then, 1t determines conditions, using data dependency
information, that paths must respect to exhibit the same infeasibility. Finally, it constructs an automaton
matching the generalized infeasible paths.

/* Let x be the input,
and res the output
abs :=x; 1 := 2|%

res := 1]°;

if [abs < 0]° then
| [abs := —abs]%;

while [i < abs|®

do

Example

Y/

L (res := res x1; 4 :=1+1]7;

if [x < 1]9 then
| [res := res

5]";

- In step (1), an 1input 1s arbitrarily chosen (e.g.,
x = 2), the program 1s executed, and the
activated path 1s traced (abctetfef gt)

- In step (2), the tool chooses a new path to
cover (indicated with dotted arrows) based on
the current path using a depth-first strategy

- In (3), the tool tries to activate another path
with the same method. This time, the solver
gives a solution to the path condition. This
solution (X = 3)

- In (4), the tool tries to activate the statement
h, and for the very same reason as step (2), the
attempt fails.

/* Let x be the input,
and res the output */
abs :=x; i := 2|%

res := 1]°;
if [abs < 0]¢ then
| [abs := —abs]%;
while [< abs|¢ do
L [res := res xi; 1 :=i+1]7;
if [z < 1]9 then
L [res := res + 5]";

T = 2b‘(a, bLCL
f CK f .cK‘a: >0
tze tEeKZ <z
Kf k’f
f e fe 3>z
f gl(f QLx <1

—— Covered path segment
------ » Symbolically executed path segment
—> Newly activated path segment

(3)

(4)

R
»:‘b
f c x>0
t{e 2>
o
/9 <1
f[e 3t
¢
fg ~ h/x:O
el
F e '
g\{vt
X1
P
[\/t

An infeasible path automaton

activated path

Integration to DSE

Path selector

partial path

filter

path condition

infeasible path

test input) yes

Concrete interp.

Frequency (number of input paths)

140 4
120
100
80
60 -
40
20

140:
120:
100 A
SO:

140-\
120:
100:
80
60-
40:

1401\
120:
100:
80:
60:
40-

-

60

bsearch

20

LI I I UL)
100 1000

git_config

TTrTTT T T Trrrri)
100 1000

merge

20

LA T T FTrrrTrTT)
100 1000

tcas

Speedup

LI 1 lllllll>
100 1000

Results

Figure 1llustrates by histograms the distribution of the speedup for each input
infeasible path on four programs (merge, tcas, bsearch, and git config) with
/.3 solver.

These histograms show how the gain can vary in function of the input
infeasible paths.

g 17+ 1Tk
I +1T¢
where

T1 1s the time needed to prove the input infeasible path infeasible,
TG the time needed for the generalization

TE the time needed to prove that every path generalized are infeasible.

Results

Ezxplanation extraction

- Dichotomic

Intrusive

] Only propagation

>

Solver

C Colibri
Y Yices
Z 73

Z OO0

A

bsearch merge selection erfill tcas checkutf8 git_config
Program

ged

tritype

where T1 1s the time needed to generate tests without infeasible path generalization for every path of size below a certain limit

T2 the time needed to generate the same tests with generalization enabled.

The speedup 1s simply T1/T2

Feedback

Problem statement(research statement is clear) +

Innovation (the work brings new innovation ideas)
Contribution(IPEG) +

Logical correcteness +

Proof of statements +

Readablity -

What 1s good/interesing about the paper

o Structured

Abstract

Context: Automatic code-based test input generation aims at generating a test suite ensuring good code coverage.

. Dynamic Symbolic Execution (DSE) recently emerged as a strong code-based testing technique to increase coverage by
D etal ed ex amp e solving path conditions with a combination of symbolic constraint solving and concrete executions.
Objective: When selecting paths in DSE for generating test inputs, some paths are actually detected as being
® N 00 el i 1700 Ch infeasible, meaning that no input can be found to exercize them. But, showing path infeasibility instead of generating
PP test inputs is costly and most effort could be saved in DSE by reusing path infeasibility information.

Method: In this paper, we propose a method that takes opportunity of the detection of a single infeasible path to
generalize to a possibly infinite family of infeasible paths. The method first extracts an explanation of path condition,
that is, the reason of the path infeasibility. Then, it determines conditions, using data dependency information, that
paths must respect to exhibit the same infeasibility. Finally, it constructs an automaton matching the generalized
infeasible paths.

Results: We implemented our method in a prototype tool called IPEG (Infeasible Path Explanation and Gener-
alization), for DSE of C programs. First experimental results obtained with IPEG show that our approach can save
considerable effort in DSE, when generating test inputs for increasing code coverage.

Conclusion: Infeasible path generalization allows test generation to know of numerous infeasible paths ahead of time,
and consequently to save the time needed to show their infeasibility.

Keywords: Dynamic symbolic execution, explanation, test input generation

What could be better

* Reability

8. Conclusion

