Zhangwei Xie

® Computer School, Beijing Information Science and Technology University, Beijing, China
[Zhangi Cui
° Computer School, Beijing Information Science and Technology University, Beijing, China

Jiaming Zhang

Computer School, Beijing Information Science and Technology University, Beijing, China

® O
Xiulei Liu
O n m O 1 C Xe Cu 1 O I l Computer School, Beijing Information Science and Technology University, Beijing, China
Liwei Zheng

Computer School, Beijing Information Science and Technology University, Beijing, China

https://ieeexplore.ieee.org/author/37088537993
https://ieeexplore.ieee.org/author/37086055051
https://ieeexplore.ieee.org/author/37088537230
https://ieeexplore.ieee.org/author/37085475773
https://ieeexplore.ieee.org/author/38247580400

Meta Data & Stats

Published in:

Year:

Number of Authors:
Citations:

Pages (PDF):
Figures:

References:

Formals:

[EEE Access (Volume: 8)

2020
S,

1

11

0

o7

0 definitions

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639

N O e 1

. Introduction

Overview

Our Technique
Instance Analyses
Experiments

Related work

Conclusion

Table of Content

8. Acknowledgments

9. References

Research Questions

RQ 1: Can the test cases generated by symbolic execution help improve the efficiency of fuzz testing?

RQ 2: Compared with the afl-cmin command provided by Kelinci, can CSEFuzz lower the time costs of
selecting 1nitial seed test cases?

RQ 3: Compared with the afl-cmin command provided by Kelinci, can CSEFuzz improve the paths covered
and the number of defects detected by fuzz testing?

RQ 4: Will different 1nitial seed test case selection strategies attect the efficiency of fuzz testing?

Symbolic

Program under
test

FIGURE 1. The framework of fuzz testing based on symbolic execution.

execution

CSEFuzz Framework

Program

instrumentation

Candidate Test
Cases Generation

Y

Test case template

1El

— Execute program
dynamically
Instrumented
program |
:

Coverage
criteria

—

Test case template
selection

Test case selection

Initial seed test

cases

!

»

Fuzz testing

=

Test report

* generates candidate test cases
for the program under testing
by symbolic execution.

» extracts the test case templates
of the test case candidates
based on the coverage
information and selects a subset
of test case templates according
to different coverage criteria

* selects representative test cases
according to the coverage of the
test case templates

Candidate Test Case Generation

* the tester first constructs a control flow graph of the

I public static int test(int x, int y,int 2){ program under test

2 if(y >100){ _ . |

3 System.out.printIn(“hello™): * the tester starts traversing from the first statement of

4 1f(x+z>102){ the program

5 System.out.println(*hello™);

g’ } } * If the statement is encountered, then the relationship

8) between the program variables and input variables
will be updated

FIGURE 2. Example of the relationship between path conditions and
input variables.

* a conditional statement is encountered, then two paths
will be branched out
* if solved - saved as a candidate test case

* Example: 1-2-8: y <= 100, <x=tlag, y=100, z=tflag>

Test Case Template Generation

Algorithm 1 Select a Subset of Test Case Templates Accord-
ing to Specific Coverage Criteria

Input: set rcTemplate;
Output: set iniTemplates;

1:

set Factors:= all the program elements in test case tem-
plate set tcTemplate /*According to different coverage
strategies, the program elements can be decisions, condi-
tions, and basic paths*/

2: while (Factors '= @) do

7
8:
0:
10:
11:
12:

13:
14:

15:

test case template; //to store the test case tem-
plate that covers the maximum number of elements in
Factors
count = (; //store the number of program elements
that are covered by the current test case template
for each tc in tcTemplate do
num:= number of program elements in Factor that
are covered by the current test case template #c
if (num > count) then
template.= tc
end if
end for
initemplates.add(template);
Remove program elements contained in the test case
template from Factors
tcTemplate.delete(template)
end while

return iniTemplate

is used to describe the program coverage information of test cases

test case t are {item, item, ..., item, ...} (itemcan be any kind of program element,
such as branches, conditions, and paths). template(t) = {item, item, . . .,
item= =

subset of test case templates can be selected according to ditferent coverage
criteria to achieve the goal of covering as many program elements as possible
with as few test case templates as possible

white-box testing uses 3 different coverage criteria to choose test case templates:
decision coverage, condition coverage and path coverage

decision coverage tries to cover different branches of each decision in the
program under test

condition coverage tries to cover different values of each condition of the
decisions in the program under test

path coverage tries to cover every basic path of the program under test

Initial Seed Test Case Selection

Algorithm 2 Use of the Initial Seed Test Cases for Fuzz
Testing

Input: tested program P, initial seed test case set Seeds
Output: test report testReport
1: effectiveSeeds = &; /[Effective seed test case set
2: for each seed € Seeds do

3:

4:

1

11:

12:

13:
14:
15:
16:
17:
18:
19:
20:

@ 0PN W

//Validate the seed test case
Execute(seed); //use the seed to execute the program
and monitor the execution result
if (a new program path is covered during seed’s exe-
cution) then

effectiveSeeds.add(seed);
end if

end for
while (true) do

seed.= choose a seed test case from effectiveSeeds
newSeed.= mutate(seed); //generate a new test case
by mutating
Execute(newSeed); //luse newSeed to execute the
program and monitor the execution result
if (newSeed covered a new program path during exe-
cution) then
save the new program path in test report testReport
end if
if (newSeed trigger crash during execution) then
save the defect in test report testReport
end if
if (reach the specific time) then
break;
end if

21: end while
22: return festReport

the corresponding initial seed test cases need to be
selected

in the candidate test cases, multiple test cases can cover
the same program elements

the fuzz tester will validate the initial test cases after they
are selected

the validated initial seed test cases are mutated to obtain
new test cases

the program path that is covered and the defects that are
detected will be added to the test report.

Experimental Results

TABLE 3. Comparison of CSEFuzzn and Kelinci in terms of path coverage and defects detection.

: : Kelinci
Experimental Objects

Number of Paths Covered Number of Defects Detected

CSEFuzzn

Number of Paths Covered Number of Defects Detected

TCAS_V30 16 21 22 21
BankAccount 13 2 13 -

Apollo 7 12 8 12
MerArbiter-v2 11 11 12 12
LoopExample 11 2 11 2

TwoLoopExample 18 4 21 4
WBS 9 5 10 6
rbt 3 3 33 3
TreeMapSimple 6 3 27 3
MathSin 12 2 18 2
fuzz/gram/test 14 0 14 0
TOTAL 120 65 189 69
TABLE 4. Time costs of initial seed test case selection and validation (in seconds).
Experimental Objects CSEFuzzn CSEFuzzd CSEFuzzc CSEFuzzp afl-cmin
‘ ISS' ISV~ ISS ISV ISS ISV ISS ISV ISS ISV
TCAS_V30 0.0 590.7 2.7 3.9 2.8 14.1 2.7 3.8 67.5 10.8
BankAccount 0.0 10.1 1.1 2.0 1.2 2.0 1.1 2.0 5.7 2.4
Apollo 0.0 136.8 2.1 2.2 2.1 2.3 2.1 2.2 18.6 3.3
MerArbiter-v2 0.0 301.1 2.0 2.0 2.0 2.0 2.0 2.0 35.8 4.7
LoopExample 0.0 104.3 1.0 2.0 1.0 3.0 1.0 2.0 12.4 9.7
TwoLoopExample 0.0 16832.9 13.6 5.0 14.1 8.0 14.9 5.9 2320.9 13.1
WBS 0.0 27.0 2.0 10.0 2.0 9.9 2.0 11.1 6.6 9.4
rbt 0.0 38969.9 18.5 9.9 18.5 9.7 55.0 256.1 4827.5 13.1
TreeMapSimple 0.0 716.1 2.9 11.9 2.8 12.8 2.6 52.1 95.1 12.1
MathSin 0.0 56.7 1.0 4.7 1.0 4.7 1.0 4.5 5.0 2.0
fuzz/gram/test 0.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0
TOTAL 0.0 57747.6 47.9 55.6 48.5 70.5 85.4 343.7 7396.1 82.6

I'ISS is the time cost of the initial seed selection.
2 ISV is the time cost of the initial seed validation.

R(Q Answers

RQ1: by using the test cases generated by symbolic execution as initial seed test cases, more program paths
are covered and more defects are detected. The efficiency of fuzz testing can be improved by using seeds
generated by symbolic execution.

RQ2: directly using test case candidates that are generated by symbolic execution will consume too much time
for validating test cases

RQ3: compared with command afl-cmin, which was provided by Kelinci, CSEFuzz is based on decision,
condition and path coverage criteria and can improve the path coverage of fuzz testing and the number of
defects detected

RQ4: different test case selection strategies will affect the results of CSEFuzz. CSEFuzz based on a path
coverage criterion performs best in the covered paths and the total time costs for initial seed selection and
defects detected. The efficiency of fuzz testing can be improved by choosing proper seed selection strategies

Feedback

Problem statement(research statement is clear) +

Innovation (the work brings new innovation ideas)
Contribution(CSEFuzz) +

Logical correcteness +

Proof of statements(there are no questional, unproven statments or conclusions) +

Readablity -

What 1s good/interesing about the paper

o Structured
* Detailed example

* Novel approach

What could be better

e These is no code base

e Pseudocode

* Readability

8. Conclusion

