
СSEFuzz: Fuzz Testing Based
on Symbolic Execution

Zhangwei Xie
Computer School, Beijing Information Science and Technology University, Beijing, China
Zhanqi Cui
Computer School, Beijing Information Science and Technology University, Beijing, China
Jiaming Zhang
Computer School, Beijing Information Science and Technology University, Beijing, China
Xiulei Liu
Computer School, Beijing Information Science and Technology University, Beijing, China
Liwei Zheng
Computer School, Beijing Information Science and Technology University, Beijing, China

https://ieeexplore.ieee.org/author/37088537993
https://ieeexplore.ieee.org/author/37086055051
https://ieeexplore.ieee.org/author/37088537230
https://ieeexplore.ieee.org/author/37085475773
https://ieeexplore.ieee.org/author/38247580400

Meta Data & Stats

Published in:

Year:

Number of Authors:

Citations:

Pages (PDF):

Figures:

References:

Formals:

IEEE Access (Volume: 8)

2020

5

1

11

0

32

0 definitions

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639

Table of Content
1. Introduction

2. Overview

3. Our Technique

4. Instance Analyses

5. Experiments

6. Related work

7. Conclusion

8. Acknowledgments

9. References

Research Questions

RQ 1: Can the test cases generated by symbolic execution help improve the efficiency of fuzz testing?
RQ 2: Compared with the afl-cmin command provided by Kelinci, can CSEFuzz lower the time costs of
selecting initial seed test cases?
RQ 3: Compared with the afl-cmin command provided by Kelinci, can CSEFuzz improve the paths covered
and the number of defects detected by fuzz testing?
RQ 4: Will different initial seed test case selection strategies affect the efficiency of fuzz testing?

СSEFuzz Framework
• generates candidate test cases

for the program under testing
by symbolic execution.

• extracts the test case templates
of the test case candidates
based on the coverage
information and selects a subset
of test case templates according
to different coverage criteria

• selects representative test cases
according to the coverage of the
test case templates

Candidate Test Case Generation
• the tester first constructs a control flow graph of the

program under test

• the tester starts traversing from the first statement of
the program

• If the statement is encountered, then the relationship
between the program variables and input variables
will be updated

• a conditional statement is encountered, then two paths
will be branched out

• if solved - saved as a candidate test case

• Example: 1-2-8: y <= 100, <x=flag, y=100, z=flag>
•

Test Case Template Generation
• is used to describe the program coverage information of test cases

• test case t are {item1, item2, ..., itemi, ...} (itemi can be any kind of program element,
such as branches, conditions, and paths). template(t) = {item1, item2, . . . ,
itemi, . . . }

• subset of test case templates can be selected according to different coverage
criteria to achieve the goal of covering as many program elements as possible
with as few test case templates as possible

• white-box testing uses 3 different coverage criteria to choose test case templates:
decision coverage, condition coverage and path coverage

• decision coverage tries to cover different branches of each decision in the
program under test

• condition coverage tries to cover different values of each condition of the
decisions in the program under test

• path coverage tries to cover every basic path of the program under test

Initial Seed Test Case Selection
• the corresponding initial seed test cases need to be

selected

• in the candidate test cases, multiple test cases can cover
the same program elements

• the fuzz tester will validate the initial test cases after they
are selected

• the validated initial seed test cases are mutated to obtain
new test cases

• the program path that is covered and the defects that are
detected will be added to the test report.

Experimental Results

RQ Answers
• RQ1: by using the test cases generated by symbolic execution as initial seed test cases, more program paths

are covered and more defects are detected. The efficiency of fuzz testing can be improved by using seeds
generated by symbolic execution.

• RQ2: directly using test case candidates that are generated by symbolic execution will consume too much time
for validating test cases

• RQ3: compared with command afl-cmin, which was provided by Kelinci, CSEFuzz is based on decision,
condition and path coverage criteria and can improve the path coverage of fuzz testing and the number of
defects detected

• RQ4: different test case selection strategies will affect the results of CSEFuzz. CSEFuzz based on a path
coverage criterion performs best in the covered paths and the total time costs for initial seed selection and
defects detected. The efficiency of fuzz testing can be improved by choosing proper seed selection strategies

Feedback
• Problem statement(research statement is clear) +

• Innovation (the work brings new innovation ideas) +

• Contribution(CSEFuzz) +

• Logical correcteness +

• Proof of statements(there are no questional, unproven statments or conclusions) +

• Readablity -

 What is good/interesing about the paper
• Structured

• Detailed example

• Novel approach

What could be better
• These is no code base

• Pseudocode

• Readability

8. Conclusion

