

39th International Conference

on Software Engineering

May 20-28, 2017 - Buenos Aires, Argentina

Machine-Learning-Guided Selectively Unsound Static Analysis

Kihong Heo Seoul National University, Seoul, Korea

Hakjoo Oh Korea University, Seoul, Korea

Kwangkeun Yi Seoul National University, Seoul, Korea

Meta Data & Stats

- **Conference:** ICSE
 - Track: Program Analysis II
 - **Year:** 2017
- **Number of Authors:** 3
 - Citations: 28
 - **Pages (PDF):** 11
 - Figures: 4
 - **References:** 24
 - **Formals:** 0 definitions

What is the Study About?

Experiments goals:

unsound analyses?

- Efficacy of OC-SVM: Does the one-class classification algorithm outperform two-class classification algorithms?

- Time Cost: How does our technique affect cost of analysis?

To present a machine-learning-based technique for selectively applying unsoundness in static analysis.

- Effectiveness of Approach: How much is the selectively unsound analysis better than the fully sound or fully

Table of Content

- 1. Introduction
- 2. Overview
 - 2.1. Uniformly Unsound Analysis
 - 2.2. Uniformly Sound Analysis
 - 2.3. Selectively Unsound Analysis
- 3. Our Technique
- 4. Instance Analyses

- 5. Experiments
- 6. Related work
- 7. Conclusion
- 8. Acknowledgments
- 9. References

Sound and Unsound Analysis

Example

```
str = "hello world";
 skip;
size = positive_input();
for(i=0; i<size; i++)</pre>
 skip;
... = str[i]; // buffer access 2
```

for(i=0; !str[i]; i++)// buffer access 1

Uniformly Sound Analysis

F

T

Example

```
str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
    skip;
size = positive_input();
for(i=0; i<size; i++)
    skip;
... = str[i]; // buffer access 2
```

Uniformly Unsound Analysis

Example

```
str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
    skip;
size = positive_input();
for(i=0; i<size; i++)
    skip;
... = str[i]; // buffer access 2
```

UUA

```
str = "hello world";
i = 0;
if (!str[i]) // buffer access 1 T
skip;
size = positive_input();
i = 0;
if (i < size)
skip;
... = str[i]; // buffer access 2 F
```

Selectively Unsound Analysis

Example

```
str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
    skip;
size = positive_input();
for(i=0; i<size; i++)
    skip;
... = str[i]; // buffer access 2
```

SUA

```
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1 T
skip;
size = positive_input();
for(i = 0; i < size; i++)
skip;
... = str[i]; // buffer access 2 T
```

One Class Support Vector Machine

OC-SVM

Experiments

			BASE	ELINE	SELE	CTIVE	Uni	FORM
Program	LOC	Bug	Т	F	Т	F	Т	F
SM-1	0.5K	28	28	18	28	15	13	5
SM-2	0.8K	2	2	16	1	4	0	0
SM-3	0.7K	3	3	3	3	3	0	0
SM-4	0.7K	10	10	6	10	6	6	0
SM-5	1.7K	3	3	6	3	6	0	0
SM-6	0.4K	1	0	0	0	0	0	0
SM-7	1.1K	2	2	32	0	2	0	0
BIND-1	1.2K	1	1	35	1	33	0	0
BIND-2	1.7K	1	1	45	0	41	0	0
BIND-3	0.5K	1	1	4	0	1	0	0
BIND-4	1.1K	2	2	0	0	0	0	0
FTP-1	0.8K	4	4	13	4	3	0	0
FTP-2	1.5K	1	1	7	1	6	0	3
FTP-3	1.5K	24	24	25	23	17	7	12
polymorph-0.4.0) 0.7K	10	10	6	3	6	0	6
ncompress-4.2.4	1.9K	12	0	10	4	0	0	0
129.compress	2.0K	7	7	34	7	14	4	7
spell-1.0	2.2K	1	0	0	0	0	0	0
man-1.5h1	4.7K	6	5	60	1	28	0	13
256.bzip2	4.7K	3	3	149	3	21	3	21
gzip-1.2.4a	8.2K	13	11	87	8	34	0	24
bc-1.06	17.0K	2	0	57	0	10	0	9
sed-4.0.8	25.9K	1	0	64	0	14	0	4
Total		138	118	677	100	264	33	104

TABLE I THE NUMBER OF ALARMS IN INTERVAL ANALYSIS

Feedback

- Problem statement
- Innovation
- Contribution
- Logical correcteness
- Proof of statements
- Readablity

What is good/interesing about the paper

- Structured
- Detailed example
- Novel approach

What could be better

- These is no code base
- Examples are hard to read
- Did not explain their choice in Experiments part
- Not enough references
- Hard to read for non-ML person

8. Conclusion

