Detecting and Understanding
JavaScript Global Identifier
Conflicts on the Web

Paper review

Max Trunnikov 2023-08-22

Meta Data

* Authors: Mingxue Zhang, Wei Meng
 Conference: ESEC/FSE

e Year: 2020

« Citations: 4

* References: 36

 Downloads: 264

 Pages: 11

What is this study about?

1. Many web-applications include JavaScript code from different hosts
2. All scripts are loaded in the same single global namespace

3. Result: scripts may override global variables and functions from
other ones

4. All this leads to unexpected behaviour and runtime errors

Table of Contents
Abstract

1. Introduction

. Problem Statement

. Design and Methodology

. Evaluation

. Discussion

. Related Work

N O o0 AW DN

. Conclusion

References

Problem statement -

* Three types of conflicts:
» Value conflicts
* Function definition conflicts
* Type conflicts

» Scope of research: problems caused by global identifier conflicts in scripts from
different organizations:

* third-party overwrites first-party

o first-party overwrites third-party

 third-party overwrites other third-party
 Research challenges:

* Type inference

* Object support

» Alias analysis

Innovation =

* The article is not about innovations
* The article is about research and analysis

Contribution =

* JSObserver - browser based dynamic analysis framework for
detecting JavaScript global identifier conflict at run time
(https://qgithub.com/cuhk-seclab/JSObserver)

* Analysed data from the main pages of Alexa top 100K websites in
2019 (https://zenodo.org/record/3874944)

* Result: 145K+ conflicts detected on 31K+ popular websites

« Conclusion: JavaScript global identifier conflict is an emerging threat
to both the web users and the integrity of web applications. Need to
isolate JavaScript code from different organizations.

https://github.com/cuhk-seclab/JSObserver
https://zenodo.org/record/3874944

Logical correctness . -
Proof of statements . -

Design and methodology
Implementation

Evaluation

Case studies

Performance of JSObserver
Related work

Discussion

1.0 =

Readability - -

0.24 — - Fun.ction Definition
* Very nice research article -~ Varisle Type

0 20 40 60 80 100

e Clear and logical narration Target Length

Table 2: Categorization of global identifier conflicts.

* Visual content:] e e

var html =) (
. 3 if(i;i’}obil.e...Andr;oid()){ Category #Websites #Conflicts %Conflicts
) G ra hICS 4 html += liv ...>"; Function Definition 9,566 36,813 25.23
p > third -> first 715 1510 1.03
6 else if(isMobile.i0SO) { ' o third -> diff_third 311 543 037
7 html += VoL a hre B L € g first -> third 349 704 0.48
) Cod e g } o third -> same_third 1,283 7,086 4.86
10 document.body.innerHTML += html; first -> first 6,829 25’580 17.53
11 3 unknown 891 1,390 0.95
. . Variable Type 3,501 27,893 19.12
icti . 3 it third -> first 338 556 0.38
o StatIStICS t ab | eS Listing 3: First-party definition of addHTML() on third o diff. third o oo o1e
https://dre.pt/. first -> third 288 434 0.30
third -> same_third 434 820 0.56
first -> first 1,881 22,882 15.68
1 function addHTML(Q) { unknown 643 2,995 2.05
2 var html = "...<img ...sr https://dkq729jo4dajs.cloudfror Variable Value 27,199 81,212 55.66
.net/.../logo-portal.png\" ...> "; third - first 7,128 8,582 5.88
3 html += "<div ... href=\"\" ... Aceder </div>"; third -> diff_third 5,302 7,476 5.12
- ot . first -> third 2,021 2,493 1.71
5 document.body.innerHTML += html; third -> same third 4270 9302 6.37
6} first -> first 11,986 40,248 27.58

Listing 4: Third-party redefinition of addHTMLY(). unknown 7% B 5%

Design and Narrative Structure -

References and figures order v

all the possible paths and revealed malicious behaviors. Other anal-
ysis includes data race detection [14, 22, 29], determinacy analy-
sis [32], JavaScript performance profiling [9], concurrency error
detection [13] and crash path computation [18]. These techniques
are orthogonal to JSOBSERVER, which focuses on JavaScript global
identifier conflicts.

Table 9: Slowdown on Page Loading Time.

Round Average (X) Max(X) #Incomplete Loading

1 10.84 192.48 2

2 11.58 194.78 6

3 10.45 213.62 i
L

4.6 Performance of JSOBSERVER

We measure the slowdown on page loading time to evaluate the per-
formance overhead incurred by JSOBSERVER. Specifically, we used a
Vanilla Chromium browser and the prototype of JSOBSERVER to visit
the Alexa top 100 websites separately, waited for at most 5 minutes
before closing the browser, and calculated the average page loading
time and the average slowdown in three rounds. The experiment
results are shown in Table 9. As shown, JSOBSERVER incurs an av-

Summary and links to the
subsections @
2 PROBLEM STATEMENT

In this section, we first formally define the three types of conflicts
that we study, then demonstrate the scope of our research, and
finally discuss our research challenges.

3 DESIGN AND METHODOLOGY

In this section, we present JSOBSERVER, a browser-based dynamic
analysis framework for detecting JavaScript global identifier con-
flicts at run time. We record each function definition in the V8
parser to detect function definition conflicts (§3.1). We perform
just in time instrumentation of all JavaScript code that is executed
to cover all writes to a memory location (§3.2). The records allow
us to detect conflicting writes by different scripts to the same global
memory locations (§3.3).

—_—
-
‘\A

An exemplary article

