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What is the Study About?

An approach to work with less strict, ambiguous programming language 
grammars, which defers ambiguity resolution until parsing time and allows 
user to specify how resolution is done.
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1.§. Contributions of the Study

❖ Novel approach of implicit and explicit grouping to resolve ambiguities

❖ Mechanized proof of correctness in Coq

❖ Reusable library 



2. Motivating Resolvable Ambiguity and Overview

• Ambiguity example: 1&3==1 leads to 1&(3==1) and (1&3)==1 

• Define ambiguous (def 2.1) and resolvable (def 2.2) programs .

• Ambiguity from three angles: pre-existing languages, custom operators in libs 
and new operations in DSL.

• Static guarantee that all syntactically valid programs are resolvable.



2.3. Approach Overview
• Embedding the approach in a conventional parser.

• Introduction of running example.

• Splittable productions, operator sequence, grouping 

• Static resolvability (restrictions): split productions as linked list; first/non-first 
operator partitioning.



3. Formal Semantics for Grouping
• Formal definitions (bind, grouping, rules)

• Consistently split grouping specification (def 3.1) 



4. Static Resolvability and Its Mechanized Proof

• Statement: consistently split grouping specification => resolvable ambiguities

• Proof outline. Lemma 4.1. Lemma 4.2. Lemma 4.3. Lemma 4.4. Lemma 4.5. Lemma 4.6. Static Resolvability Theorem (Theorem 

4.7).

• Proof mechanisation using Coq/TLC library (~7000 lines). Re-writing formalisation in Coq.



5. Adapting OCaml Expressions to Use a Grouper

• Modification of Menhir parser generator used in OCaml compiler

• Challenges: two meanings of `;` in OCaml; if-then-else as split production; 
match as a split production; splitting records



6. Implementation and Evaluation

• Grouping as a library. MCore/OCaml-like language, ~800 lines. Compute Shared Packed 
Parse Forest representing valid trees. Compute partial ambiguity resolutions with O(n) 
complexity.

• Use the library to re-implement OCaml expression language. ∼0.04 % failure rate. Worst 
case overhead: 6X (0.001/0.006). 

• Parser generator for DSLs.



7. Related Work
• Prior work (Palmkvist, 2021) of the same authors on resolvable ambiguity: more expressive formalism, no 

static guarantees.

• Formalisms of Precedence. (Floyd, 1963) Similarity to operator-precedence grammars (OPGs). (Aasa, 1995) is 
strongly unambiguous. (Afroozeh, 2013) Precedence through grammar rewrites - more verbose. (Afroozeh, 2015) 
Data-dependant grammars - more restrictive. (Danielsson, 2011) Mixfix operators - more unrestrictive.

• Other approaches to ambiguity. (Ford, 2004) Unambiguous formalism. Parser generators solutions: (Pottier, 

2005), (Parr, 2011), (Parr, 2014), (Lang, 1974), (Scott, 2010), (Early, 1970).



8. Conclusion



Issues
• Why do we need this and how to apply the theory of resolvable ambiguity?

• Formal specification are hard to comprehend (gaps?)
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