
Statically Resolvable 
Ambiguity

VIKTOR PALMKVIST, KTH Royal Institute of Technology, Sweden
ELIAS CASTEGREN, Uppsala University, Sweden
PHILIPP HALLER, KTH Royal Institute of Technology, Sweden
DAVID BROMAN, KTH Royal Institute of Technology, Sweden

Proceedings of the ACM on Programming Languages, Volume 7, 
Issue POPL, Article No.: 58pp 1686–1712, https://doi.org/
10.1145/3571251

https://doi.org/10.1145/3571251
https://doi.org/10.1145/3571251


Meta Data & Stats

Conference:

Track:

Year:

Number of Authors:

Citations:

Pages (PDF): 

Figures: 

References:

Formals: 

POPL

Program Analysis & Parsing

2023

4

0

27

10

30

3 definitions, 6 lemmas, 1 theorem



What is the Study About?

An approach to work with less strict, ambiguous programming language 
grammars, which defers ambiguity resolution until parsing time and allows 
user to specify how resolution is done.



Table of Content
1. Introduction

2. Motivating Resolvable Ambiguity and Overview

2.1.Motivating Resolvable Ambiguity

2.2.The Importance of Static Guaranties for 
Resolvability

2.3.Overview of Our Approach

3. A Formal Semantics for Explicit and Implicit 
Grouping

4. Static Resolvability and Its Mechanized Proof

4.1.Proof Outline

4.2.Mechanization

5. Adapting OCaml Expressions to Use a Grouper

5.1.Challenges

6. Implementation and Evaluation

6.1.Grouping as a Library

6.2.Re-implementing Expressions in OCaml

6.3.A Parser Generator for DSLs Using Resolvable 
Ambiguity

7. Related Work

8. Conclusion



1.§. Contributions of the Study

❖ Novel approach of implicit and explicit grouping to resolve ambiguities

❖ Mechanized proof of correctness in Coq

❖ Reusable library 



2. Motivating Resolvable Ambiguity and Overview

• Ambiguity example: 1&3==1 leads to 1&(3==1) and (1&3)==1 

• Define ambiguous (def 2.1) and resolvable (def 2.2) programs .

• Ambiguity from three angles: pre-existing languages, custom operators in libs 
and new operations in DSL.

• Static guarantee that all syntactically valid programs are resolvable.



2.3. Approach Overview
• Embedding the approach in a conventional parser.

• Introduction of running example.

• Splittable productions, operator sequence, grouping 

• Static resolvability (restrictions): split productions as linked list; first/non-first 
operator partitioning.



3. Formal Semantics for Grouping
• Formal definitions (bind, grouping, rules)

• Consistently split grouping specification (def 3.1) 



4. Static Resolvability and Its Mechanized Proof

• Statement: consistently split grouping specification => resolvable ambiguities

• Proof outline. Lemma 4.1. Lemma 4.2. Lemma 4.3. Lemma 4.4. Lemma 4.5. Lemma 4.6. Static Resolvability Theorem (Theorem 

4.7).

• Proof mechanisation using Coq/TLC library (~7000 lines). Re-writing formalisation in Coq.



5. Adapting OCaml Expressions to Use a Grouper

• Modification of Menhir parser generator used in OCaml compiler

• Challenges: two meanings of `;` in OCaml; if-then-else as split production; 
match as a split production; splitting records



6. Implementation and Evaluation

• Grouping as a library. MCore/OCaml-like language, ~800 lines. Compute Shared Packed 
Parse Forest representing valid trees. Compute partial ambiguity resolutions with O(n) 
complexity.

• Use the library to re-implement OCaml expression language. ∼0.04 % failure rate. Worst 
case overhead: 6X (0.001/0.006). 

• Parser generator for DSLs.



7. Related Work
• Prior work (Palmkvist, 2021) of the same authors on resolvable ambiguity: more expressive formalism, no 

static guarantees.

• Formalisms of Precedence. (Floyd, 1963) Similarity to operator-precedence grammars (OPGs). (Aasa, 1995) is 
strongly unambiguous. (Afroozeh, 2013) Precedence through grammar rewrites - more verbose. (Afroozeh, 2015) 
Data-dependant grammars - more restrictive. (Danielsson, 2011) Mixfix operators - more unrestrictive.

• Other approaches to ambiguity. (Ford, 2004) Unambiguous formalism. Parser generators solutions: (Pottier, 

2005), (Parr, 2011), (Parr, 2014), (Lang, 1974), (Scott, 2010), (Early, 1970).



8. Conclusion



Issues
• Why do we need this and how to apply the theory of resolvable ambiguity?

• Formal specification are hard to comprehend (gaps?)



Keywords & Terms
restricted
grammar

resolvable
ambiguity 

statically 
resolvable 
ambiguity 

grouper

OCaml

Coq

splittable 
productions 

operator 
sequences


