
Sound, precise, and fast
abstract interpretation with
tristate numbers

HARISHANKAR VISHWANATHAN, Rutgers University, USA
MATAN SHACHNAI, Rutgers University, USA
SRINIVAS NARAYANA, Rutgers University, USA
SANTOSH NAGARAKATTE, Rutgers University, USA

CGO '22: Proceedings of the 20th IEEE/ACM International
Symposium on Code Generation and Optimization, April 22, Pages
254-265, https://doi.org/10.5281/zenodo.5703630

Presented by Maxim Petrov. May 16, 2023

https://doi.org/10.5281/zenodo.5703630

Meta Data & Stats

Conference:

Track:

Year:

Number of Authors:

Citations:

Pages (PDF):

Figures:

References:

Formals:

CGO

Program Analysis and Optimization

2022

4

0

20

5

67

3 definitions, 28 lemmas & theorems

What is the Study About?

Formal specification of tnum (tristate numbers) abstraction domain for user
code static analysis verification based on BPF static analyzer. Optimality and
soundness of the abstract arithmetic operators for tnum domain. Novel
algorithm for multiplication of tnums.

Keywords & Terms
Berkeley Packet Filter (BPF) - virtual machine for packet-filtering in Linux kernel (https://lwn.net/Articles/599755/; https://www.tcpdump.org/
papers/bpf-usenix93.pdf; https://www.kernel.org/doc/Documentation/networking/filter.txt)

Extended Berkeley Packet Filter (eBPF) - universal in-kernel virtual machine, that has hooks all over the kernel (https://
lwn.net/Articles/740157/;)

Abstract Interpretation - partial execution of a computer program which gains information about its semantics
(e.g., control-flow, data-flow) without performing all the calculations. (https://en.wikipedia.org/wiki/Abstract_interpretation;)

Tristate Numbers (tnums) - n-trits numbers, consisting of a trits with possible values {1,0,µ}, where µ denotes
undefined bit (0 or 1).

Soundness

Precision

Bounded Verification

https://lwn.net/Articles/599755/
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://en.wikipedia.org/wiki/Abstract_interpretation

Stated Problem(s) & RQ

❖ Linux kernel provides no formal reasoning or proofs of soundness or
precision of its bit-wise & arithmetic algorithms on tnums.

❖ Performance of known proven arithmetics algorithms is lower than kernel
ones.

Contributions of the Study

❖ Provides the first proof of soundness and optimality of the kernel's
algorithms for addition and subtraction.

❖ Novel multiplication algorithms which is provably sound.

❖ Contribution into Linux kernel.

Paper Structure
I. Introduction

II. Background

A. Primer on Abstract Interpretation

• Abstraction and concretezation functions. Abstract operators.
Galois connection. Optimality.

B. The Tnum Abstract Domain

• Abstract and concrete domains. Implementation of tnums in the
Linux kernel. Galois connection. Abstract operators on tnums.
Challenges.

III. Soundness And Optimality Of Abstract Arithmetic Over Tnums

A. Automatic Bounded Verification Of Kernel Tnum Arithmetic

• Soundness of 2-ary operators. Membership predicate. Quantifying
over well-formed tnums. Putting it all together. Example: encoding
abstract tnum addition. Observation from bounded verification.

B. Soundness and Optimality Of Tnum Abstract Addition

• An example. Full adder equation. Key proof technique.

C. Sound and Efficient Tnum Abstract Multiplication

• Our algorithm our_mul through an example.

IV. Experimental Evaluation

• Prior algorithms from abstract multiplication.

A. Evaluation Of Precision Of our_mul

B. Performance Evaluation Of our_mul

V. Related Work

• BPF safety. Abstract interpretation. Safety of static analyzers.

VI. Conclusion

Acknowledgments

References

VII. Supplementary Materials

 A. Proofs for Auxiliary Lemmas for Tnum Addition

 B. Proof of our new algorithm for Tnum multiplication

Feedback
Positives

• widely used, practical topic

• formal approach with lots of formal definitions and proofs

• supplied practical results

• lots of references to related works

To be improved

• complex formal theory

• hardly applicable to general code static analysis domain

